Abstract
We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate $\mathcal {C}_{\varepsilon }$ fits well with the model $\mathcal {C}_{\varepsilon } = \mathcal {C}_{\varepsilon,\infty } + \mathcal {D}/R_L^-$ for all levels of flow compressibility considered here, where $R_L^-$ is the generalized large-scale Reynolds number. The asymptotic value $\mathcal {C}_{\varepsilon,\infty }$ describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.