Abstract

The Hawkes self-excited point process provides an efficient representation of the bursty intermittent dynamics of many physical, biological, geological, and economic systems. By expressing the probability for the next event per unit time (called "intensity"), say of an earthquake, as a sum over all past events of (possibly) long-memory kernels, the Hawkes model is non-Markovian. By mapping the Hawkes model onto stochastic partial differential equations that are Markovian, we develop a field theoretical approach in terms of probability density functionals. Solving the steady-state equations, we predict a power law scaling of the probability density function of the intensities close to the critical point n=1 of the Hawkes process, with a nonuniversal exponent, function of the background intensity ν_{0} of the Hawkes intensity, the average timescale of the memory kernel and the branching ratio n. Our theoretical predictions are confirmed by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.