Abstract

Experimental studies of the pairing state of cuprate superconductors reveal asymmetric behaviors of the hole-doped (p-type) and electron-doped (n-type) cuprates. The pairing symmetry, pseudogap phenomenon, low-energy spin excitations and the spatial homogeneity of the superconducting order parameter appear to be non-universal among the cuprates, which may be attributed to competing orders. We propose that the non-universal pseudogap and nano-scale variations in the quasiparticle spectra may be the result of a charge nematic (CN) phase stabilized by disorder in highly two-dimensional (2D) p-type cuprates. The CN phase is accompanied by gapped spin excitations and competes with superconductivity (SC). In contrast, gapless spin excitations may be responsible for the absence of pseudogap and the presence of excess sub-gap spectral weight in the momentum-independent quasiparticle spectra of n-type cuprates. The physical implications and further verifications for these conjectures are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.