Abstract

The question of well- and ill-posedness of entropy admissible solutions to the multi-dimensional systems of conservation laws has been studied recently in the case of isentropic Euler equations. In this context special initial data were considered, namely the 1D Riemann problem which is extended trivially to a second space dimension. It was shown that there exist infinitely many bounded entropy admissible weak solutions to such a 2D Riemann problem for isentropic Euler equations, if the initial data give rise to a 1D self-similar solution containing a shock. In this work we study such a 2D Riemann problem for the full Euler system in two space dimensions and prove the existence of infinitely many bounded entropy admissible weak solutions in the case that the Riemann initial data give rise to the 1D self-similar solution consisting of two shocks and possibly a contact discontinuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.