Abstract
We consider the stochastic Navier–Stokes equations in three dimensions and prove that the law of analytically weak solutions is not unique. In particular, we focus on three examples of a stochastic perturbation: an additive, a linear multiplicative and a nonlinear noise of cylindrical type, all driven by a Wiener process. In these settings, we develop a stochastic counterpart of the convex integration method introduced recently by Buckmaster and Vicol. This permits us to construct probabilistically strong and analytically weak solutions defined up to a suitable stopping time. In addition, these solutions fail to satisfy the corresponding energy inequality at a prescribed time with a prescribed probability. Then we introduce a general probabilistic construction used to extend the convex integration solutions beyond the stopping time and in particular to the whole time interval [0,\infty) . Finally, we show that their law is distinct from the law of solutions obtained by Galerkin approximation. In particular, nonuniqueness in law holds on an arbitrary time interval [0,T] , T>0 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.