Abstract

In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic cycles for smooth, meaning C ∞, parametrized families {g t ∣t∈ℝ} of surface diffeomorphisms. We assume that a quadratic tangency q is formed at t=0 between the stable and unstable lines of two periodic points, not belonging to the same orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other with positive relative speed as the parameter evolves, starting at t=0 and the point q. We also assume that, in some neighborhood W of K and of the orbit of tangency o(q), the maximal invariant set for g 0=g t=0 is K∪o(q), where o(q) denotes the orbit of q for g 0. We then prove that, when the Hausdorff dimension HD(K) is bigger than one, but not much bigger (see (H.4) in Section 1.2 for a precise statement), then for most t, |t| small, g t is a non-uniformly hyperbolic horseshoe in W, and so g t has no attractors in W. Most t, and thus most g t , here means that t is taken in a set of parameter values with Lebesgue density one at t=0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call