Abstract

In uncooled long-wave IR camera systems, the temperature of a focal plane array (FPA) is variable along with the environmental temperature as well as the operating time. The spatial nonuniformity of the FPA, which is partly affected by the FPA temperature, obviously changes as well, resulting in reduced image quality. This study presents a real-time nonuniformity correction algorithm based on FPA temperature to compensate for nonuniformity caused by FPA temperature fluctuation. First, gain coefficients are calculated using a two-point correction technique. Then offset parameters at different FPA temperatures are obtained and stored in tables. When the camera operates, the offset tables are called to update the current offset parameters via a temperature-dependent interpolation. Finally, the gain coefficients and offset parameters are used to correct the output of the IR camera in real time. The proposed algorithm is evaluated and compared with two representative shutterless algorithms [minimizing the sum of the squares of errors algorithm (MSSE), template-based solution algorithm (TBS)] using IR images captured by a 384×288 pixel uncooled IR camera with a 17μm pitch. Experimental results show that this method can quickly trace the response drift of the detector units when the FPA temperature changes. The quality of the proposed algorithm is as good as MSSE, while the processing time is as short as TBS, which means the proposed algorithm is good for real-time control and at the same time has a high correction effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call