Abstract
Nonuniform tubular neighborhoods of curves in R n are studied by using weighted distance functions and generalizing the normal exponential map. Different notions of injectivity radii are introduced to investigate singular but injective exponential maps. A generalization of the thickness formula is obtained for nonuniform thickness. All singularities within almost injectivity radius are classified by the Horizontal Collapsing Property. Examples are provided to show the distinction between the different types of injectivity radii, as well as showing that the standard differentiable injectivity radius fails to be upper semicontinuous on a singular set of weight functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.