Abstract

This article discusses modern techniques for nonuniform sampling and reconstruction of functions in shift-invariant spaces. It is a survey as well as a research paper and provides a unified framework for uniform and nonuniform sampling and reconstruction in shift-invariant subspaces by bringing together wavelet theory, frame theory, reproducing kernel Hilbert spaces, approximation theory, amalgam spaces, and sampling. Inspired by applications taken from communication, astronomy, and medicine, the following aspects will be emphasized: (a) The sampling problem is well defined within the setting of shift-invariant spaces. (b) The general theory works in arbitrary dimension and for a broad class of generators. (c) The reconstruction of a function from any sufficiently dense nonuniform sampling set is obtained by efficient iterative algorithms. These algorithms converge geometrically and are robust in the presence of noise. (d) To model the natural decay conditions of real signals and images, the sampling theory is developed in weighted L p-spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.