Abstract
Modern processors dedicate more than half their chip area to large L2 and L3 caches and these caches contribute significantly to the total processor power. A large cache is typically split into multiple banks and these banks are either connected through a bus (uniform cache access — UCA) or an on-chip network (non-uniform cache access — NUCA). Irrespective of the cache model (NUCA or UCA), the complex interconnects that must be navigated within large caches are found to be the dominant part of cache access power. While there have been a number of proposals to minimize energy consumption in the inter-bank network, very little attention has been paid to the optimization of intra-bank network power that contributes more than 50% of the total cache dynamic power in large cache banks. In this work we study various mechanisms that introduce low-swing wires inside cache banks as energy saving measures. We propose a novel non-uniform power access design, which when coupled with simple architectural mechanisms, provides the best power-performance tradeoff. The proposed mechanisms reduce cache bank energy by 42% while incurring a minor 1% drop in performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.