Abstract

In this article, we experimentally study the instability of the key electrical characteristic for the fabricated <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\beta }$ </tex-math></inline-formula> -Ga2O3 MOSFET under positive bias stress (PBS) and negative bias stress (NBS), such as threshold voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{{\mathrm {TH}}}$ </tex-math></inline-formula> ), ON-resistance ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{{\mathrm {on}}}$ </tex-math></inline-formula> ), subthreshold slope (SS), and hysteresis. An ionized traps model is proposed to explain the instability, which depicts the traps and interfaces states capturing/releasing electrons from the channel. We find nonuniform instability mechanisms. Under the PBS of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{GS} = 4$ </tex-math></inline-formula> V for 1000 s, the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{{\mathrm {TH}}}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{{\mathrm {on}}}$ </tex-math></inline-formula> are increased by 0.8 V and 19%, respectively. The constant interface state density indicates that this instability is caused by border traps in the gate oxide capturing electrons from channel. For the NBS of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{GS} = -4$ </tex-math></inline-formula> V for 1000 s, the variation in the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{{\mathrm {TH}}}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{{\mathrm {on}}}$ </tex-math></inline-formula> is −0.54 V and −8.8%, respectively. The instability is attributed to both the border traps and interface states, and the net increase in activated interface states is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2.25\times10$ </tex-math></inline-formula> 11 cm−2 extracted from hysteresis. Unlike the PBS, the interface states release electrons to bulk traps, and thus the activated interface state density changes. A good agreement with experimental results shows that the proposed model could accurately describe the instability mechanism under both PBS and NBS. These results provide guidance for identifying defects, optimizing device structure, and fabrication process to improve the reliability of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\boldsymbol {\beta } $ </tex-math></inline-formula> -Ga2O3 MOSFET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call