Abstract
The equation of state (EOS) for neutron star (NS) crusts is studied in the Thomas-Fermi (TF) approximation using the EOS for uniform nuclear matter obtained by the variational method with the realistic nuclear Hamiltonian. The parameters associated with the nuclear three-body force, which are introduced to describe the saturation properties, are finely adjusted so that the TF calculations for isolated atomic nuclei reproduce the experimental data on masses and charge distributions satisfactorily. The resulting root-mean-square deviation of the masses from the experimental data for mass-measured nuclei is about 3 MeV. With use of the nuclear EOS thus determined, the nuclei in the crust of NS at zero temperature are calculated. The predicted proton numbers of the nuclei in the crust of NS are close to the gross behavior of the results by Negele and Vautherin, while they are larger than those for the EOS by Shen et al. due to the difference in the symmetry energy. The density profile of NS is calculated with the constructed EOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.