Abstract
We study the ergodic theory of non-conservative C 1-generic diffeomorphisms. First, we show that homoclinic classes of arbitrary diffeomorphisms exhibit ergodic measures whose supports coincide with the homoclinic class. Second, we show that generic (for the weak topology) ergodic measures of C 1-generic diffeomorphisms are non-uniformly hyperbolic: they exhibit no zero Lyapunov exponents. Third, we extend a theorem by Sigmund on hyperbolic basic sets: every isolated transitive set Λ of any C 1-generic diffeomorphism f exhibits many ergodic hyperbolic measures whose supports coincide with the whole set Λ. In addition, confirming a claim made by R. Mañé in 1982, we show that hyperbolic measures whose Oseledets splittings are dominated satisfy Pesin’s Stable Manifold Theorem, even if the diffeomorphism is only C 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.