Abstract

This paper presents an analytical study of flow redistribution in a compressor stage due to asymmetric tip clearance distribution. The entire stage is modeled as an actuator disk and it is assumed that upstream and downstream flow fields are determined by the local tip clearance. The flow is assumed to be inviscid and incompressible. First, an axisymmetric flow model is used to connect upstream and downstream flows. Second, a linear perturbation approximation is used for nonaxisymmetric analysis in which each flow variable is assumed to consist of a mean (axisymmetric value) plus a small perturbation (asymmetric value). Thus, the perturbations in velocity and pressure induced by the tip clearance asymmetry are predicted. Furthermore, rotordynamic effects of such flow nonuniformity are examined as well. [S0889-504X(00)01404-5]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call