Abstract

The temporal development of a single mode Rayleigh-Taylor instability consists of three stages: the linear, free fall and terminal velocity regimens. The purpose of this paper is to report on new phenomena observed in the approach to terminal velocity. Our numerical study shows an unexpected nonuniform approach to terminal velocity. The nonuniformity applies especially to the spikes, which are fingers of heavy fluid falling into the light fluid, but it also applies to the rising bubblesof light fluid. For spikes especially, our results call into question the meaningfulness of a terminal velocity for moderate values of the Atwood number A. After a short time period of pseudo-terminal plateau, the spike velocity increases to a significantly higher maximum, followed by a decrease. This phenomena appears to be due to a slow evolution in the shape of the spike and bubble. We find a relation between the spike (bubble) acceleartion and the tip curvature. In correlation with an increase in the spike velocity, the main body of the spike becomes narrower and the tip curvature increases. Our numerical results are by the Front Tracking method. The very late time simulations considered here required stabilization by a small value for the viscosity, so that the compressible Navier-Stokes equations govern the dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.