Abstract

The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR, NOT, and MOD$m$ gates, where $m > 1$ is an arbitrary constant. We prove:- $NTIME[2^n]$ does not have non-uniform ACC circuits of polynomial size. The size lower bound can be strengthened to quasi-polynomials and other less natural functions.- $E^{NP}$, the class of languages recognized in $2^{O(n)}$ time with an $NP$ oracle, doesn't have non-uniform ACC circuits of $2^{n^{o(1)}}$ size. The lower bound gives a size-depth tradeoff: for every $d$, $m$ there is a $\delta > 0$ such that $E^{NP}$ doesn't have depth-$d$ ACC circuits of size $2^{n^{\delta}}$ with MOD$m$ gates.Previously, it was not known whether $EXP^{NP}$ had depth-3 polynomial size circuits made out of only MOD6 gates. The high-level strategy is to design faster algorithms for the circuit satisfiability problem over ACC circuits, then prove that such algorithms can be applied to obtain the above lower bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.