Abstract

This paper solves the advection–diffusion equation by treating both advection and diffusion residuals in a separate (non-unified) manner. An alternative residual distribution (RD) method combined with the Galerkin method is proposed to solve the advection–diffusion problem. This Flux-Difference RD method maintains a compact-stencil and the whole process of solving advection–diffusion does not require additional equations to be solved. A general mathematical analysis reveals that the new RD method is linearity preserving on arbitrary grids for the steady-state advection–diffusion equation. The numerical results show that the flux difference RD method preserves second-order accuracy on various unstructured grids including highly randomized anisotropic grids on both the linear and nonlinear scalar advection–diffusion cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.