Abstract
In this paper, we describe the ability of nontypeable Haemophilus influenzae (NTHi) to coexist with the human host and the devastating results associated with disruption of the delicate state of balanced pathogenesis, resulting in both acute and chronic respiratory tract infections. It has been seen that the strains of NTHi causing disease show a marked genetic and phenotypic diversity but that changes in the lipooligosaccharide (LOS) and protein size and antigenicity in chronically infected individuals indicate that individual strains of NTHi can remain and adapt themselves to avoid expulsion from their infective niche. The lack of reliance of NTHi on a single mechanism of attachment and its ability to interact with the host with rapid responses to its environment confirmed the success of this organism as both a colonizer and a pathogen. In vitro experiments on cell and organ cultures, combined with otitis media and pulmonary models in chinchillas, rats, and mice, have allowed investigations into individual interactions between NTHi and the mammalian host. The host-organism interaction appears to be a two-way process, with NTHi using cell surface structures to directly interact with the mammalian host and using secreted proteins and LOS to change the mammalian host in order to pave the way for colonization and invasion. Many experiments have also noted that immune system evasion through antigenic variation, secretion of enzymes and epithelial cell invasion allowed NTHi to survive for longer periods despite a specific immune response being mounted to infection. Several outer membrane proteins and LOS derivatives are discussed in relation to their efficacy in preventing pulmonary infections and otitis media in animals. General host responses with respect to age, genetic makeup, and vaccine delivery routes are considered, and a mucosal vaccine strategy is suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.