Abstract

BackgroundNontypeable Haemophilus influenzae (NTHi) is one of the most common Gram-negative pathogens in otitis media and exacerbation of chronic obstructive pulmonary disease. NTHi has been reported to invade bronchial epithelial cells. This penetration enables NTHi to evade the host immune system and antibiotics, and it seems to be related to the intractable features of these diseases. However, the precise mechanism of the invasion has been unknown. We hypothesized that protein-E, an outer membrane protein of NTHi, plays a role in this penetration into bronchial epithelial cells.ResultsWe utilized two NTHi strains. NTHi efficiently attached to plate-bound vitronectin (254–309 / field at 1,000× magnification) and this attachment was blocked by pretreatment with protein-E peptide (PE84–108). The blockade of adhesion was dependent on the concentration of PE84–108. NTHi strains invaded bronchial epithelial cells and the intracellular bacteria were localized in early endosomes. Furthermore, intracellular invasion of NTHi was also blocked by PE84–108, but not by Arg-Gly-Asp (RGD) peptide. Pretreatment with PE84–108 significantly prevented cells from being invaded by both NTHi strains, which was confirmed by fluorescent microscope observation. In addition, pretreatment with PE84–108 significantly reduced percentages of CFU after gentamicin treatment of cells per input CFU.ConclusionsThese results suggest that NTHi does not directly bind to the cell surface, but binds to host vitronectin that is bound to the cell surface, via bacterial protein-E. Bacterial protein-E and host vitronectin play a role in the attachment to bronchial epithelial cells and is also involved in the subsequent intracellular invasion of NTHi. A novel vaccine or treatment strategy targeting the protein-E-vitronectin axis may prevent respiratory intracellular infection of NTHi and may lead to better clinical outcomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0600-8) contains supplementary material, which is available to authorized users.

Highlights

  • Nontypeable Haemophilus influenzae (NTHi) is one of the most common Gram-negative pathogens in otitis media and exacerbation of chronic obstructive pulmonary disease

  • We demonstrated that intracellular invasion of NTHi into bronchial epithelial cells is dependent on protein-E via its binding with vitronectin

  • We demonstrated that BEAS-2B cells abundantly express vitronectin, and that heparin and PE84–108 peptide pretreatment significantly reduced NTHi intracellular invasion. These results show that the interaction between NTHi protein-E and vitronectin plays an important role in NTHi intracellular invasion (Fig. 7)

Read more

Summary

Introduction

Nontypeable Haemophilus influenzae (NTHi) is one of the most common Gram-negative pathogens in otitis media and exacerbation of chronic obstructive pulmonary disease. NTHi has been reported to invade bronchial epithelial cells. This penetration enables NTHi to evade the host immune system and antibiotics, and it seems to be related to the intractable features of these diseases. The precise mechanism of the invasion has been unknown. Some H. influenzae strains have a polysaccharide capsule and they are divided into six serotypes (a-f ), termed typeable H. influenzae. The other strains do not possess a capsule, and they are termed. NTHi can invade host bronchial epithelial cells, and this invasion enables NTHi to escape from host immune system [4, 5]. The exact mechanism by which NTHi breaks into bronchial epithelial cells has been unknown

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.