Abstract

Synchronization in a frequency-weighted Kuramoto model with a uniform frequency distribution is studied. We plot the bifurcation diagram and identify the asymptotic coherent states. Numerical simulations show that the system undergoes two first-order transitions in both the forward and backward directions. Apart from the trivial phase-locked state, a novel nonstationary coherent state, i.e., a nontrivial standing wave state is observed and characterized. In this state, oscillators inside the coherent clusters are not frequency-locked as they would be in the usual standing wave state. Instead, their average frequencies are locked to a constant. The critical coupling strength from the incoherent state to the nontrivial standing wave state can be obtained by performing linear stability analysis. The theoretical results are supported by the numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.