Abstract

Utilization of microalgae has been hampered by limited tools for creating loss-of-function mutants. Furthermore, modified strains for deployment into the field must be free of antibiotic resistance genes and face fewer regulatory hurdles if they are transgene free. The oleaginous microalga, Nannochloropsis oceanica CCMP1779, is an emerging model for microalgal lipid metabolism. We present a one-vector episomal CRISPR/Cas9 system for N.oceanica that enables the generation of marker-free mutant lines. The CEN/ARS6 region from Saccharomyces cerevisiae was included in the vector to facilitate its maintenance as circular extrachromosal DNA. The vector utilizes a bidirectional promoter to produce both Cas9 and a ribozyme flanked sgRNA. This system efficiently generates targeted mutations, and allows the loss of episomal DNA after the removal of selection pressure, resulting in marker-free nontransgenic engineered lines. To test this system, we disrupted the nitrate reductase gene ( NR) and subsequently removed the CRISPR episome to generate nontransgenic marker-free nitrate reductase knockout lines (NR-KO).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.