Abstract

Abstract We derive the nonthermal velocities (NTVs) in the transition region of an active region using the Si iv 1393.78 Å line observed by the Interface Region Imaging Spectrograph and compare them with the line-of-sight photospheric magnetic fields obtained by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The active region consists of two strong field regions with opposite polarity, separated by a weak field corridor that widened as the active region evolved. The means of the NTV distributions in strong field regions (weak field corridors) range between ∼18–20 (16–18) km s−1, albeit the NTV maps show a much larger range. In addition, we identify a narrow lane in the middle of the corridor with significantly reduced NTV. The NTVs do not show a strong center-to-limb variation, albeit they show somewhat larger values near the disk center. The NTVs are well correlated with redshifts as well as line intensities. The results obtained here and those presented in our companion paper on Doppler shifts suggest two populations of plasma in the active region emitting in Si iv. The first population exists in the strong field regions and extends partway into the weak field corridor between them. We attribute this plasma to spicules heated to ∼0.1 MK (often called type II spicules). They have a range of inclinations relative to vertical. The second population exists in the center of the corridor, is relatively faint, and has smaller velocities, likely horizontal. These results provide further insights into the heating of the transition region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call