Abstract

We present calculations of expected continuum emissions from Sedov-Taylor phase Type Ia supernova remnants (SNRs), using the energy spectra of cosmic ray (CR) electrons and protons from nonlinear diffusive shock acceleration (DSA) simulations. A new, general-purpose radiative process code, Cosmicp, was employed to calculate the radiation expected from CR electrons and protons and their secondary products. These radio, X-ray and gamma-ray emissions are generally consistent with current observations of Type Ia SNRs. The emissions from electrons in these models dominate the radio through X-ray bands. Decays of \pi^0 s from p-p collisions mostly dominate the gamma-ray range, although for a hot, low density ISM case (n_{ISM}=0.003 cm^{-3}), the pion decay contribution is reduced sufficiently to reveal the inverse Compton contribution to TeV gamma-rays. In addition, we present simple scalings for the contributing emission processes to allow a crude exploration of model parameter space, enabling these results to be used more broadly. We also discuss the radial surface brightness profiles expected for these model SNRs in the X-ray and gamma-ray bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.