Abstract
Oxidative decomposition of low concentrations (50–1000 ppm) of diluted benzene in air was carried out in a nonthermal plasma (NTP) dielectric barrier discharge (DBD) reactor with the inner electrode made up of stainless steel fibres (SMF) modified with transition metal oxides in such a way to integrate the catalyst in discharge zone. Typical results indicate the better performance of MnOx and TiO2/MnOx modified systems, which may be attributed to the in situ decomposition of ozone on the surface of MnOx that may lead to the formation of atomic oxygen; whereas ultraviolet light induced photocatalytic oxidation may be taking place with TiO2 modified systems. Water vapour improved the selectivity to total oxidation. Oxidative decomposition of low concentrations of (50–1000 ppm) of diluted benzene in air was carried out in a nonthermal plasma (NTP) dielectric barrier discharge (DBD) reactor at ambient conditions with the inner electrode modified with transition metal oxides (TiO2, MnOx and TiO2/MnOx). The results indicated that TiO2/MnOx integrated system showed the best performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.