Abstract

Tetracycline (TC) and Oxytetracycline (OTC) are common antibiotics increasingly detected in the environment, posing a potential risk to human and aquatic lives. Although conventional methods such as adsorption and photocatalysis are used for the degradation of TC and OTC, they are inefficient in removal efficiency, energy yield, and toxic byproduct generation. Herein, a falling-film dielectric barrier discharge (DBD) reactor coupled with environmentally friendly oxidants (hydrogen peroxide (HPO), sodium percarbonate (SPC), and HPO + SPC) was applied, and the treatment efficiency of TC and OTC was investigated. Experimental results showed that moderate addition of the HPO and SPC exhibited a synergistic effect (SF > 2), significantly improving the antibiotic removal ratio, total organic removal ratio (TOC), and energy yield by more than 50%, 52%, and 180%, respectively. After 10 min of DBD treatment, the introduction of 0.2 mM SPC led to a 100% antibiotic removal ratio and a TOC removal of 53.4% and 61.2% for 200 mg/L TC and 200 mg/L OTC, respectively. Also, 1 mM HPO dosage led to 100% antibiotic removal ratios after 10 min of DBD treatment and a TOC removal of 62.4% and 71.9% for 200 mg/L TC and 200 mg/L OTC, respectively. However, the DBD + HPO + SPC treatment method had a detrimental effect on the performance of the DBD reactor. After 10 min of DBD plasma discharge, the removal ratios for TC and OTC were 80.8% and 84.1%, respectively, when 0.5 mM HPO + 0.5 mM SPC was added. Moreover, principal component and hierarchical cluster analysis confirmed the differences between the treatment methods. Furthermore, the concentration of oxidant-induced in-situ generated ozone and hydrogen peroxide were quantitatively determined, and their indispensable roles during the degradation process were established via radical scavenger tests. Finally, the synergetic antibiotic degradation mechanisms and pathways were proposed, and the toxicities of the intermediate byproducts were evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call