Abstract

We have studied a new type of myocardial catheter ablation with photosensitization reaction to realize non-thermal therapy for atrial arrhythmia, such as atrial fibrillation. Photochemically-generated reactive oxygen species may induce myocardial electrophysiological damage without heat generation. In this study, to demonstrate photosensitization reaction-induced myocardial electrical conduction block, the inferior vena cava to tricuspid annulus (IVC-TA) isthmus linear ablation was conducted with photosensitization reaction in porcine heart in vivo, using a newly developed laser catheter (7 Fr.). The end point of the procedure was the production of IVC-TA isthmus block under the electrophysiological analysis by diagnostic catheter with 10-bipole electrodes placed in right atrium along the isthmus. Talaporfin sodium (NPe6) as a photosensitizer was injected intravenously to pigs at 2.5-5.0 mg/kg. About 15 min after the injection, the laser light at the wavelength of 663 nm with a catheter output power density of 40-60 W/cm<sup>2</sup> in about 1.4 mm spot size was irradiated through the laser catheter point by point in line crossing the isthmus under the fluoroscopic guidance. Before the photosensitization procedure, pacing signal from the distal electrodes of the diagnostic catheter, propagated through the isthmus in order. During the irradiation, electrical potential at the irradiated area was diminished. After the completion of the irradiation line, the bidirectional conduction block on the IVC-TA isthmus was validated by pacing from the distal and proximal bipole. These results indicated that photosensitization reaction could achieve the electrical conduction block of myocardial tissue immediately after the irradiation. We think that photosensitization reaction could become a novel therapy for atrial arrhythmia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.