Abstract

We consider a two-orbital Hubbard model with Hund coupling and crystal-field splitting and show that in the vicinity of the high-spin/low-spin transition, crystal-field quenches can induce an excitonic condensation at initial temperatures above the highest ordering temperature in equilibrium. This condensation is the effect of an increase in the spin entropy and an associated cooling of the effective electronic temperature. We identify a dynamical phase transition and show that such quenches can result in long-lived nonthermal excitonic condensates which have no analogue in the equilibrium phase diagram. The results are interpreted by means of an effective pseudo-spin model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call