Abstract

Abstract Current measurements of the spectral energy distribution in radio, X-ray and γ-ray provide a sufficiently wide basis for determining basic properties of energetic electrons and protons in the extended lobes of the radio galaxy Fornax A. Of particular interest is establishing observationally, for the first time, the level of contribution of energetic protons to the extended emission observed by the Fermi satellite. Two recent studies concluded that the observed γ-ray emission is unlikely to result from Compton scattering of energetic electrons off the optical radiation field in the lobes, and therefore that the emission originates from decays of neutral pions produced in interactions of energetic protons with protons in the lobe plasma, implying an uncomfortably high-proton energy density. However, our exact calculation of the emission by energetic electrons in the magnetized lobe plasma leads to the conclusion that all the observed emission can, in fact, be accounted for by energetic electrons scattering off the ambient optical radiation field, whose energy density (which, based on recent observations, is dominated by emission from the central galaxy NGC 1316) we calculate to be higher than previously estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.