Abstract

We study the transport properties of a double quantum dot (DQD) molecule at zero and at finite temperature. The properties of the zero-temperature conductance depend on whether the level attraction between the symmetric and antisymmetric states of the DQD, produced by the coupling to the leads, exceeds or not the interdot tunneling. For finite temperature, we find a remarkable nonthermal broadening effect of the conductance resonance when the energy levels of the individual dots are detuned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.