Abstract

Crohn's disease is an inflammatory disorder of the bowel, believed to arise from the dysregulation of intestinal mucosal immunity. The interleukin-10-deficient (IL10-/-) mouse, which develops intestinal inflammation in the presence of gut microflora, serves as a mouse model of Crohn's disease. Nontargeted urinary metabolite profiling was carried out to identify systemic metabolic changes associated with the development of intestinal inflammation caused by IL10-deficiency. Spot urine samples, collected from IL10-/- and wildtype mice at ages 5.5, 7, 8.5, and 10.5 weeks old were analyzed by gas chromatography-mass spectrometry (GCMS). The data were analyzed using XCMS software, multiple t tests, and ANOVA. Among the key metabolic differences detected were elevated urinary levels of xanthurenic acid and fucose in IL10-/- mice relative to wildtype, indicating upregulation of tryptophan catabolism and perturbed fucosylation in IL10-/- mice. Three short-chain dicarboxylic acid metabolites were decreased in urine of IL10-/- mice relative to wildtype, suggesting the downregulation of fatty acid oxidation in IL10-/- mice. These metabolic differences were reproducible in an independent set of mice. This study demonstrates that nontargeted GCMS metabolite profiling of IL10-/- mice can provide insights into the metabolic effects of IL10-deficiency and identify potential markers of intestinal inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call