Abstract

Fraudulent products are ubiquitous in all markets. Besides the financial aspect, a major issue regarding products adulteration for society and the environment is the missing regulation and control of these goods. Therefore, harmful and toxic compounds in fraudulent products may become a risk for human health and the environment. Even small amounts of toxic substances can still have damaging effects. Thus, a sensitive and reliable identification of compounds is needed. Novel technologies are necessary to use identifying and preventing fraud and related risks. Goods from the food, flavor, and fragrance markets often contain volatile organic compounds (VOCs), which include most allergenic fragrances. For the detection and identification of these substances, gas chromatographic separation hyphenated with high resolution mass spectrometry (GC–HRMS) is an ideal instrumental technique. GC–simultaneous electron and chemical ionization (ec) time-of-flight (TOF)-MS generates various types of information via simultaneous ec–HRMS. Advantages are given for target, known unknown, and unknown unknown data analysis by generating various types of ions within one single experimental GC–MS run. In this study, the experimental nontargeted screening approach and corresponding data analysis workflows—simultaneously using molecular ion information and structural information—are presented for the molecular identification and authenticity verification process from a brand perfume using GC–ecTOF-MS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call