Abstract

Background This study was performed to identify metabolites associated with incident acute coronary syndrome (ACS) and explore causality of the associations. Methods and Results We performed nontargeted metabolomics in a nested case-control study in the Dongfeng-Tongji cohort, including 500 incident ACS cases and 500 age- and sex-matched controls. Three metabolites, including a novel one (aspartylphenylalanine), and 1,5-anhydro-d-glucitol (1,5-AG) and tetracosanoic acid, were identified as associated with ACS risk, among which aspartylphenylalanine is a degradation product of the gut-brain peptide cholecystokinin-8 rather than angiotensin by the angiotensin-converting enzyme (odds ratio [OR] per SD increase [95% CI], 1.29 [1.13-1.48]; false discovery rate-adjusted P=0.025), 1,5-AG is a marker of short-term glycemic excursions (OR per SD increase [95% CI], 0.75 [0.64-to 0.87]; false discovery rate-adjusted P=0.025), and tetracosanoic acid is a very-long-chain saturated fatty acid (OR per SD increase [95% CI], 1.26 [1.10-1.45]; false discovery rate-adjusted P=0.091). Similar associations of 1,5-AG (OR per SD increase [95% CI], 0.77 [0.61-0.97]) and tetracosanoic acid (OR per SD increase [95% CI], 1.32 [1.06-1.67]) with coronary artery disease risk were observed in a subsample from an independent cohort (152 and 96 incident cases, respectively). Associations of aspartylphenylalanine and tetracosanoic acid were independent of traditional cardiovascular risk factors (P-trend=0.015 and 0.034, respectively). Furthermore, the association of aspartylphenylalanine was mediated by 13.92% from hypertension and 27.39% from dyslipidemia (P<0.05), supported by its causal links with hypertension (P<0.05) and hypertriglyceridemia (P=0.077) in Mendelian randomization analysis. The association of 1,5-AG with ACS risk was 37.99% mediated from fasting glucose, and genetically predicted 1,5-AG level was negatively associated with ACS risk (OR per SD increase [95% CI], 0.57 [0.33-0.96], P=0.036), yet the association was nonsignificant when further adjusting for fasting glucose. Conclusions These findings highlighted novel angiotensin-independent involvement of the angiotensin-converting enzyme in ACS cause, and the importance of glycemic excursions and very-long-chain saturated fatty acid metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call