Abstract

The standard paradigm for radiation effects in cellular systems has involved direct damage to DNA and in particular, DNA double strand breaks as the triggering lesions leading to mutation, cell death and transformation. Recently, however, a growing body of evidence has reported non-targeted effects, which are not a direct consequence of the initial lesions produced in cellular DNA. These have included bystander responses, genomic instability, gene induction, adaptive responses and low dose hypersensitivity. A common observation of these responses is that they dominate at low doses and saturate with increasing dose. Non-targeted effects may therefore have consequences for extrapolation of risk estimates to low doses if these are important in vivo. A range of experimental techniques is being used to study non-targeted responses, including microbeam approaches. Microbeams have considerable advantages in that they allow individual cells and subcellular targets to be selected within populations with precise low doses and, if required, exact dose rates. Recent advances also allow targeting of 3-D cell systems. The mechanisms underlying non-targeted responses appear to involve production of reactive oxygen species and direct cell-to-cell signalling via gap junctional intercellular communication although significant differences exist in different cell types. The triggering lesions for these responses remain unclear however. Some non-targeted responses may be inter-related, for example in the case of bystander responses and instability and may be part of a general stress response system in irradiated populations. Some non-targeted effects may also act as protective mechanisms; if they lead to the removal of potentially damaged cells from the population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.