Abstract

Nonsymmetric branching flow through a three-dimensional (3D) vessel is considered at medium-to-high flow rates. The branching is from one mother vessel to two or more daughter vessels downstream, with laminar steady or unsteady conditions assumed. The inherent 3D nonsymmetry is due to the branching shapes themselves, or the differences in the end pressures in the daughter vessels, or the incident velocity profiles in the mother. Computations based on lattice-Boltzmann methodology are described first. A subsequent analysis focuses on small 3D disturbances and increased Reynolds numbers. This reduces the 3D problem to a two-dimensional one at the outer wall in all pressure-driven cases. As well as having broader implications for feeding into a network of vessels, the findings enable predictions of how much swirling motion in the cross-plane is generated in a daughter vessel downstream of a 3D branch junction, and the significant alterations provoked locally in the shear stresses and pressures at the walls. Nonuniform incident wall-shear and unsteady effects are examined. A universal asymptotic form is found for the flux change into each daughter vessel in a 3D branching of arbitrary cross-section with a thin divider.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.