Abstract

Excessive floor vibrations are problematic and may potentially render a floor unfit for its intended use. A design-stage check of vibrational performance of a floor design would encompass design-stage estimates of floor dynamic characteristics such as floor natural frequencies. Non-structural masses such as furniture might be present on the in-service floor. For a prediction of floor dynamic characteristics it is not common to account for the fact that non-structural masses elevated above the floor plane may contribute with inertial energy as a result of their horizontal motion occurring during vertical floor vibration. The paper addresses this subject by setting up a finite element model for the floor, which also accounts for an elevation of the non-structural masses. It is shown how different configurations of non-structural masses influence floor natural frequencies. For the investigations, the elevations and weights of the masses are modelled as random variables and Monte Carlo simulations are used for setting up the random configurations of non-structural masses across the floor area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.