Abstract

Generalized Schmidt decomposition of pure three-qubit states has four positive and one complex coefficients. In contrast to the bipartite case, they are not arbitrary and the largest Schmidt coefficient restricts severely other coefficients. We derive a nonstrict inequality between three-qubit Schmidt coefficients, where the largest coefficient defines the least upper bound for the three nondiagonal coefficients or, equivalently, the three nondiagonal coefficients together define the greatest lower bound for the largest coefficient. In addition, we show the existence of another inequality which should establish an upper bound for the remaining Schmidt coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.