Abstract
We introduce and study a partial-information model of online learning, where a decision maker repeatedly chooses from a finite set of actions and observes some subset of the associated losses. This setting naturally models several situations where knowing the loss of one action provides information on the loss of other actions. Moreover, it generalizes and interpolates between the well-studied full-information setting (where all losses are revealed) and the bandit setting (where only the loss of the action chosen by the player is revealed). We provide several algorithms addressing different variants of our setting and provide tight regret bounds depending on combinatorial properties of the information feedback structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.