Abstract

We consider privacy against hypothesis-testing adversaries within a non-stochastic framework. We develop a theory of non-stochastic hypothesis testing by borrowing the notion of uncertain variables from non-stochastic information theory. We define tests as binary-valued mappings on uncertain variables and prove a fundamental bound on the performance of tests in non-stochastic hypothesis testing. We use this bound to develop a measure of privacy. We then construct reporting policies with prescribed privacy and utility guarantees. The utility of a reporting policy is measured by the distance between reported and original values. We illustrate the effects of using such privacy-preserving reporting polices on a publicly- available practical dataset of preferences and demographics of young individuals with Slovakian nationality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.