Abstract

The burning of a solid propellant is investigated for nonsteady heat propagation in the induction zone. The equation of heat conduction in the propellant is solved in finite form for the case of a sharp change in burning rate; the time dependence of the temperature gradient at the propellant surface is obtained and used to investigate the mechanism of collapse of the diffusion flame above the surface. The combustion stability of a propellant burning in a channel with a large free volume is analyzed. The perturbations of the gas-dynamic quantities are related with the perturbations of the burning rate and hence with the properties of the induction zone in the solid phase. An analysis of the dispersion relation for the limiting case of propagation of acoustic waves in a stationary gas shows that the longitudinal acoustic perturbations that develop in the channel may grow with time, interacting with the heated subsurface layer of propellant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call