Abstract

Solid rocket performance during rapid pressure excursions differs greatly from predictions based on steady state burning rate data. Rapid pressurization following a chamber filling interval produces indicated burning rate overshoots. Transient internal ballistics of a solid propellant rocket motor during rapid pressurization part of chamber filling phase has been considered in this work. Quasi one-dimensional unsteady Euler equations with a transient propellant burning model that accounts for the effects of time rate of change of the chamber pressure on the burning rate have been used to simulate the internal ballistics of rocket motors. The compressible convective flow solver used in this study is based on Roe’s scheme. The effects of rapid chamber pressure change on the propellant and motor transient behavior have been studied. Furthermore, prediction of the level of pressurization rate has been achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.