Abstract
Analytical study of the processes of heat conduction is one of the main topics of modern engineering research in engineering, energy, nuclear industry, process chemical, construction, textile, food, geological and other industries. Suffice to say that almost all processes in one degree or another are related to change in the temperature condition and the transfer of warmth. It should also be noted that engineering studies of the kinetics of a range of physical and chemical processes are similar to the problems of stationary and nonstationary heat transfer. These include the processes of diffusions, sedimentation, viscous flow, slowing down the neutrons, flow of fluids through a porous medium, electric fluctuations, adsorption, drying, burning, etc. There are various methods for solving the classical boundary value problems of nonstationary heat conduction and problems of the generalized type: the method of separation of variables (Fourier method) method; the continuation method; the works solutions; the Duhamel's method; the integral transformations method; the operating method; the method of green's functions (stationary and non-stationary thermal conductivity); the reflection method (method source). In this paper, based on the consistent application of the Laplace transform on the dimensionless time θ and finite sine integral transformation in the spatial coordinates X and Y solves the problem of unsteady temperature distribution on the mechanism of heat conduction in a parallelepiped with boundary conditions of first kind. As a result we have the analytical solution of the temperature distribution in the parallelepiped to a conductive mode free convection, when one of the side faces of the parallelepiped is maintained at a constant temperature, and the others with the another same constant temperature.
Highlights
В связи с этим, на примере области в форме параллелепипеда при граничных условиях первого рода демонстрируется алгоритм получения аналитического решения с помощью преобразования Лапласа по временной переменной и конечного интегрального синус-преобразования по геометрическим координатам
G. Transform methods for solving partial differential equations, second edition
Summary
V. Nonstationary thermal field in the parallelepiped in the mode of heat conduction under boundary conditions of first kind. При анализе кондуктивно-ламинарной свободной конвекции в замкнутых объёмах уравнения Обербека–Буссинеска могут быть представлены в несопряжённом виде [1]. В связи с этим, на примере области в форме параллелепипеда при граничных условиях первого рода демонстрируется алгоритм получения аналитического решения с помощью преобразования Лапласа по временной переменной и конечного интегрального синус-преобразования по геометрическим координатам.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Voronezh State University of Engineering Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.