Abstract
Nonstationary signal (NSS) reconstruction from Time Varying (TV) coefficients of Time Varying Autoregressive (TVAR) process is presented in this paper. The proposed method consists of three steps, where in the first step, initial values for TVAR coefficients are estimated from synaptic weights of a three layer Artificial Neural Network (ANN) which is trained using Backpropagation (BP) learning algorithm. The estimated TVAR coefficients are then optimized using a Genetic Algorithm optimization algorithm for more accurate values in the second step. And finally once the TVAR coefficients are estimated using ANN and GA, it is then used to recover the original signal. Performance of proposed method has been evaluated by comparing reconstruction of various computer generated NSS from proposed methods with other methods. Five performance metrics was used for comparison where proposed method is shown to overcome the performance of other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.