Abstract
This article is concerned with non-stationary time series which does not require the full knowledge of the likelihood function. Consequently, a quasi-likelihood is employed for estimating parameters instead of the maximum (exact) likelihood. For stationary cases, Wefelmeyer (1996) and Hwang and Basawa (2011a,b), among others, discussed the issue of asymptotic optimality of the quasi-likelihood within a restricted class of estimators. For non-stationary cases, however, the asymptotic optimality property of the quasi-likelihood has not yet been adequately addressed in the literature. This article presents the asymptotic optimal property of the non-stationary quasi-likelihood within certain estimating functions. We use a random norm instead of a constant norm to get limit distributions of estimates. To illustrate main results, the non-stationary ARCH model, branching Markov process, and non-stationary random-coefficient AR process are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.