Abstract

We introduce a single generative mechanism that can be used to describe diverse nonstationary diffusions. A nonstationary Markovian replication process for steps is considered for which we derive analytically the time evolution of the probability distribution of the walker's displacement and the generalized telegrapher equation with time-varying coefficients, and we find that diffusivity can be determined by temporal changes of replication of an immediate step. By controlling the replications, we realize diverse diffusions such as alternating diffusion, superdiffusion, subdiffusion, and marginal diffusion, which originate from oscillating, increasing, decreasing, and slowly increasing or decreasing replications with time, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.