Abstract

In the present study, a recently developed novel approach (Bender et al. in J Hydrol 514:123–130, 2014) has been further extended to investigate the changes in the joint probabilities of extreme offshore and nearshore marine variables with time and to assess design the total water level (TWL) at the shoreline under the effects of climate change. The nonstationary generalised extreme value (GEV) distribution has been utilised to model the marginal distribution functions of marine variables (wave characteristics and sea levels), within a 40-year moving window. All parameters of the GEV were tested for statistically significant linear and polynomial trends over time, and best-fitted trends have been detected. Different copula functions were fitted at the 40-year moving windows, to model the dependence structure of extreme offshore significant wave heights and peak spectral periods, and of wave-induced sea levels on the shoreline and nearshore sea levels due to storm surges. The most appropriate bivariate models were then selected. Statistically significant polynomial trends were detected in the dependence parameters of the selected copulas, and time-dependent most likely bivariate events were extracted to be used in the estimation of the TWL at the shoreline. The methods of the present work were implemented in three selected Greek coastal areas in the Aegean Sea. The analysis revealed different variations in the most likely estimates of the offshore wave characteristics and nearshore storm surges in the three study areas, as well as in the time-dependent estimates of TWL at the shoreline. The approach combines nonstationarity and bivariate analysis, blends coastal and offshore marine features and finally provides non-trivial alterations in the response of coastal sea level dynamics to climate change signals, compared to former work on the subject. The methodology produces reasonable estimates of design quantities for coastal structures and boundary conditions for the assessment of flood hazard and risk in coastal areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call