Abstract

Results of numerical solution have been presented for a set of equations describing the nonstationary and nonisothermal growth or evaporation of microdroplets consisting of ethanol and water, sulfuric acid and water, and sulfuric and nitric acids and water. Time dependences of droplet size, temperature, and composition have been determined at low concentrations of a condensable vapor, as compared with the concentration of a carrier gas in an ambient vapor–gas mixture. The calculations have been performed using different initial conditions and approximations for the dependences of saturation vapor pressures, activity coefficients, and partial heats of condensation of the components, as well as average volumes per molecule on droplet composition and temperature. By the examples of ethanol–water and sulfuric acid–water droplets, it has been shown that nonmonotonic variations in the droplet radius are possible. Regimes of nonmonotonic variations in the temperature of a droplet that precede the onset of its stationary growth or evaporation have been revealed for all systems under consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.