Abstract

Skin color offers a strong cue for efficient localization and tracking of human body parts in video sequences for vision-based human-computer interaction. Color-based target localization could be achieved by analyzing segmented skin color regions. However, one of the challenges of color-based target tracking is that color distributions would change in different lighting conditions such that fixed color models would be inadequate to capture nonstationary color distributions over time. Meanwhile, using a fixed skin color model trained by the data of a specific person would probably not work well for other people. Although some work has been done on adaptive color models, this problem still needs further studies. We present our investigation of color-based image segmentation and nonstationary color-based target tracking, by studying two different representations for color distributions. We propose the structure adaptive self-organizing map (SASOM) neural network that serves as a new color model. Our experiments show that such a representation is powerful for efficient image segmentation. Then, we formulate the nonstationary color tracking problem as a model transduction problem, the solution of which offers a way to adapt and transduce color classifiers in nonstationary color distributions. To fulfill model transduction, we propose two algorithms, the SASOM transduction and the discriminant expectation-maximization (EM), based on the SASOM color model and the Gaussian mixture color model, respectively. Our extensive experiments on the task of real-time face/hand localization show that these two algorithms can successfully handle some difficulties in nonstationary color tracking. We also implemented a real-time face/hand localization system based on such algorithms for vision-based human-computer interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.