Abstract

AbstractSea surface temperature (SST) has been increasing since industrialization with rising greenhouse gases. However, a warming hole exists in the North Atlantic where SST has cooled by 0.4 K/century during 1900–2017. It has been argued that this cooling is due to a slowdown of the Atlantic Meridional Overturning Circulation (AMOC), and subpolar North Atlantic SST has thus been utilized to estimate AMOC variability. We assess the robustness of subpolar North Atlantic SST as a proxy for AMOC strength under historical forcing, abrupt quadrupling of CO2, and a medium future emissions pathway, finding that AMOC's fingerprint on SST depends upon forcing scenarios. AMOC is important in warming hole development during significant warming periods, although SST may introduce uncertainties for AMOC reconstruction in stabilized regimes due to diverse forcing mechanisms and decadal variability. Our results caution against using SST alone as a proxy for AMOC variability—both on paleoclimatic and contemporary time scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.