Abstract

AbstractChanges in seasonality of extreme storms have important implications for public safety, storm water infrastructure, and, in general, adaptation strategies in a changing climate. While past research on this topic offers some approaches to characterize seasonality, the methods are somewhat limited in their ability to discern the diversity of distributional types for extreme precipitation dates. Herein, we present a comprehensive approach for assessment of temporal changes in the calendar dates for extreme precipitation within a circular statistics framework which entails: (a) three measures to summarize circular random variables (traditional approach), (b) four nonparametric statistical tests, and (c) a new nonparametric circular density method to provide a robust assessment of the nature of probability distribution and changes. Two 30 year blocks (1951–1980 and 1981–2010) of annual maximum daily precipitation from 10 stations across the state of Maine were used for our analysis. Assessment of seasonality based on nonparametric approach indicated nonstationarity; some stations exhibited shifts in significant mode toward Spring season for the recent time period while some other stations exhibited multimodal seasonal pattern for both the time periods. Nonparametric circular density method, used in this study, allows for an adaptive estimation of seasonal density. Despite the limitation of being sensitive to the smoothing parameter, this method can accurately characterize one or more modes of seasonal peaks, as well as pave the way toward assessment of changes in seasonality over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.