Abstract

The spectral width of Doppler signals is used as measure of lesion-induced flow disturbance. Its estimation accuracy is compromised using the conventional short-term Fourier transform (STFT) since this method implicitly assumes signal stationarity during the signal window while the Doppler signals from arteries are markedly nonstationary. The Wigner-Ville (WVD), Choi-Williams (CWD) and Bessel distributions (BD), specifically designed for nonstationary signals, have been optimized for spectral width estimation accuracy and compared to the STFT under different signal to noise ratios using simulated Doppler signals of known time-frequency characteristics. The optimum parameter values for each method were determined as a Hanning window duration of 10 ms for the STFT, 40 ms for the WVD and CWD and 20 ms for the BD and dimensionless time-frequency smoothing constant values of five in the CWD and two in the BD. Thresholding was used to reduce the effect of cross terms and side lobes in the WVD and BD. With no added noise the WVD gave the lowest estimation error followed by the CWD. At signal-to-noise ratios (SNR's) of 10 dB and 20 dB the CWD and BD had similar errors and were markedly better than the other estimators. Overall the CWD gave the best performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.